Upcoming Webinars Archived Webinars Training Vitals Host A Webinar About Get Updates Contact

Stable Synthetic Stem Cells Could Reduce Risks and Improve Benefits

XTALKS VITALS NEWS

The synthetic cardiac stem cells are capable of withstanding extreme freeze-thaw cycles, while maintaining stability.

Share this!

January 4, 2017 | by Sarah Hand, M.Sc.

Synthetic cardiac stem cells have been developed by researchers at North Carolina (NC) State University, in collaboration with the University of North Carolina (UNC) at Chapel Hill and First Affiliated Hospital of Zhengzhou University. According to a paper on the development – which was published in the journal, Nature Communications – these cells could offer all the therapeutic benefits of naturally-occurring stem cells, without the associated risks.

The synthetic stem cells also displayed improved stability during storage, and the technology used to generate them could be applied to other cell types. In contrast, natural stem cells must be stored under specific conditions and go through several characterization steps before they can be administered to a patient. Despite their effectiveness, some patients experience tumor growth and strong immune responses when undergoing conventional stem cell therapy.

In developing the synthetic cardiac stem cells, the researchers built a cell-mimicking microparticle (CMMP) from a biocompatible polymer known as PLGA. Human growth factor proteins collected from cultured cardiac stem cells were then added to the PLGA, which was subsequently enveloped by a cardiac stem cell membrane.



“We took the cargo and the shell of the stem cell and packaged it into a biodegradable particle,” explained Ke Cheng, associate professor of molecular biomedical sciences at NC State University, associate professor in the joint biomedical engineering program at NC State and UNC and adjunct associate professor at the UNC Eshelman School of Pharmacy. Like cardiac stem cells, the CMMP was able to promote the growth of cardiac muscle cells, in vitro.

Further, when the CMMP was tested in mice who had experienced a myocardial infarction – or heart attack – the synthetic stem cells were able to encourage the growth of the heart tissue. As the synthetic CMMPs are incapable of replicating, the risk of tumor formation is minimized.

“The synthetic cells operate much the same way a deactivated vaccine works,” said Cheng. “Their membranes allow them to bypass the immune response, bind to cardiac tissue, release the growth factors and generate repair, but they cannot amplify by themselves. So you get the benefits of stem cell therapy without risks.”

The synthetic cardiac stem cells are capable of withstanding extreme freeze-thaw cycles, while maintaining stability. In addition, the cells do not need to be derived from a patient’s own stem cells, thereby minimizing the risk of rejection.

“We are hoping that this may be a first step toward a truly off-the-shelf stem cell product that would enable people to receive beneficial stem cell therapies when they’re needed, without costly delays,” said Cheng. As the current study represents a proof-of-concept of the technology, the synthetic cells will need to undergo more testing to determine their suitability for use in human patients.


Keywords: Stem Cells, Heart Attack, Cardiac


| NEXT ARTICLE | MORE NEWS | BLOGS | VIDEOS | POLLS & QUIZZES | WEBINARS |

Share this with your colleagues!

MORE NEWS
Lavazza Acquires Controlling Stake in Canada’s Kicking Horse Coffee

May 26, 2017 - Italian coffee company Lavazza, has secured an 80 percent equity stake in Canadian organic and fair-trade coffee company Kicking Horse Coffee, in a deal worth CAD$215 million.

Featured In: Food News


FDA First: Keytruda Approved for Cancer Treatment Based on Biomarker Alone

May 25, 2017 - For the first time, the FDA has approved a cancer treatment for solid tumors based on the presence of a biomarker, as opposed to specifying a tissue of origin.

Featured In: Biotech News


One Year of Medically Assisted Dying in Canada

May 25, 2017 - In June of 2016, the federal government of Canada passed legislation to legalize medically assisted dying.

Featured In: Life Science News


LEAVE A COMMENT
 
  
THE XTALKS VITALS INDUSTRY BLOG

Top 5 Most Impactful Tweets in Life Sciences During the Last Week

REGISTER FOR THESE WEBINARS

EU IVD Regulation: Top Five Changes for Medical Device Manufacturers to Consider


Thermal Processing Systems for the Food Industry: A Guide to Selecting Thermal Equipment and Technology


Rare Disease & Orphan Drug Development: Cost-Efficient Trial Design to Minimize Cash Burn


eTMF Workflows: Active eTMF to Improve the Quality of Clinical Trials


Copyright © 2016-2017 Honeycomb Worldwide Inc.