Upcoming Webinars Archived Webinars Training Vitals Host A Webinar About Get Updates Contact

Slow Aging Pathway Associated with Development of Brain Cancer

XTALKS VITALS NEWS

Glioblastoma

The study – published in the journal, Proceedings of the National Academy of Sciences – found that the NAD+ pathway is upregulated in the most common and aggressive form of brain cancer in adults, glioblastoma.

Share this!

December 9, 2016 | by Sarah Hand, M.Sc.

A metabolic pathway associated with slower aging – known as the NAD+ pathway – has now been implicated in the development of brain cancer. The study – published in the journal, Proceedings of the National Academy of Sciences – found that the NAD+ pathway is upregulated in the most common and aggressive form of brain cancer in adults, glioblastoma.

More than 70 percent of patients with glioblastoma don’t live more than two years after diagnosis. This new study found that patients whose glioblastoma displayed high expression of the NAMPT gene, which is involved in the NAD+ pathway, faced shorter life expectancies.

Further, when NAMPT-overexpressing tumors were implanted into mice, they grew rapidly. When the gene was inhibited, the tumors shrank suggesting that the NAD+ pathway could be a good target for glioblastoma therapies.

However, inhibiting this gene could have negative effects on patient aging. The gene products of the NAMPT gene is nicotinamide mononucleotide (NMN), a compound that has shown efficacy in slowing signs of aging in mice.

“There's a lot of buzz about taking NAD+ precursors for their anti-aging effects, which is based on a lot of great science,” said Dr. Albert H. Kim, an assistant professor of neurological surgery and the senior author on the paper. “We didn't directly demonstrate that taking NAD+ precursors makes tumors grow faster, but one implication of our work is that if you want to take anti-aging NAD+ precursors, you might want to keep in mind that we don't yet understand all the risks.”



Kim and his colleagues found that NAMPT was important in allowing human glioblastoma cells to survive and divide. When NAMPT was inhibited, the glioblastoma cells became sensitive to radiation therapy, which is one of the most common cancer treatments for a variety of forms of the disease.

“If you target the NAD+ pathway, you can disrupt the ability of the cancer stem cells to self-renew, and you can also make them more sensitive to radiation treatment,” said Kim. “In a patient, that could mean that if you suppress the pathway, the same dose of radiation may be more effective at destroying the tumor.”

As the NAD+ pathway is very complex, and not fully understood, Kim cautions against tinkering with the machinery before we can accurately predict the results. A human clinical trial assessing the safety of NMN is currently being conducted in Japan, however the molecule is already being marketed there as an anti-aging supplement.


Keywords: Aging, GlioblastomaCancer


| NEXT ARTICLE | MORE NEWS | BLOGS | VIDEOS | POLLS & QUIZZES | WEBINARS |

Share this with your colleagues!

MORE NEWS
Lavazza Acquires Controlling Stake in Canada’s Kicking Horse Coffee

May 26, 2017 - Italian coffee company Lavazza, has secured an 80 percent equity stake in Canadian organic and fair-trade coffee company Kicking Horse Coffee, in a deal worth CAD$215 million.

Featured In: Food News


FDA First: Keytruda Approved for Cancer Treatment Based on Biomarker Alone

May 25, 2017 - For the first time, the FDA has approved a cancer treatment for solid tumors based on the presence of a biomarker, as opposed to specifying a tissue of origin.

Featured In: Biotech News


One Year of Medically Assisted Dying in Canada

May 25, 2017 - In June of 2016, the federal government of Canada passed legislation to legalize medically assisted dying.

Featured In: Life Science News


LEAVE A COMMENT
 
  
THE XTALKS VITALS INDUSTRY BLOG

Top 5 Most Impactful Tweets in Life Sciences During the Last Week

REGISTER FOR THESE WEBINARS

EU IVD Regulation: Top Five Changes for Medical Device Manufacturers to Consider


Thermal Processing Systems for the Food Industry: A Guide to Selecting Thermal Equipment and Technology


Rare Disease & Orphan Drug Development: Cost-Efficient Trial Design to Minimize Cash Burn


eTMF Workflows: Active eTMF to Improve the Quality of Clinical Trials


Copyright © 2016-2017 Honeycomb Worldwide Inc.