Upcoming Webinars Archived Webinars Training Vitals Host A Webinar About Get Updates Contact

Recovery After Heart Attack Linked To Heart Cell Telomere Length

XTALKS VITALS NEWS

Heart Attack

Because the cardiomyocyte cells in the heart are less able to proliferate and repair damage as they age, heart attack damage in adults tends to be permanent, potentially resulting in death.

Share this!

May 31, 2016 | by Sarah Massey, M.Sc.

Heart cell telomeres rapidly degenerate after birth, limiting the heart’s ability to recover after a heart attack, according to a new study. Tweet: Heart cell #telomeres degenerate after birth limiting heart’s ability to recover after #heartattack http://ctt.ec/q8A04+ The findings – which were published in The Journal of Cell Biology by researchers at the Spanish National Center for Cardiovascular Research (CNIC) – suggest potential interventions that healthcare professionals could use to help the heart repair itself after a cardiovascular event.

While newborns have the ability to repair injuries to the muscle tissue of the heart – known as the myocardium – by the time we reach adulthood, much of these repair mechanisms have been lost. Because the cardiomyocyte cells in the heart are less able to proliferate and repair damage as they age, heart attack damage in adults tends to be permanent, potentially resulting in death.

Researchers at the CNIC set out to determine whether this cell cycle arrest phenomenon observed in the cardiomyocytes, was connected to the repetitive DNA sequences, known as telomeres, which form a protective cap at the end of chromosomes. As telomeres are susceptible to shortening with every cell replication cycle, cells can sometimes mistake these sequences for damaged DNA, which induces the cell to stop the replication process.

After measuring the length of telomeres in newborn mouse cardiomyocytes, the researchers found that these sequences quickly deteriorated in the first week of life. The researchers also noted a decreased in telomerase expression – the enzyme responsible for extending the telomeres – along with the activation of a DNA damage pathway and cell cycle inhibitor known as p21.



After further testing in mice deficient in the telomerase enzyme, they found that these animals had shorter telomeres compared to normal mice, and their cardiomyocytes stopped proliferating just one day after birth. In comparing heart injury in both wild type and telomerase-deficient mice, the researchers found that the cardiomyocytes in the shorter telomere mice were unable to proliferate and repair the damage done to the myocardium.

Interestingly, when the p21 cell cycle inhibitor was knocked-out, the regenerative capacity of the adult cardiomyocytes was significantly improved. These p21-deficient mice were better able to repair damage to the myocardium compared to wild type animals.

“We are now developing telomerase overexpression mouse models to see if we can extend the regenerative window,” said Ignacio Flores, senior author on the study. The researchers believe that maintaining telomere length in cardiomyocyte cells could help boost an adult’s ability to recover after a heart attack.


Keywords: Heart Attack, Cell Cycle, DNA Damage


| NEXT ARTICLE | MORE NEWS | BLOGS | VIDEOS | POLLS & QUIZZES | WEBINARS |

Share this with your colleagues!

MORE NEWS
German Merck Launches Spinoff Immuno-Oncology Company

June 22, 2017 - Merck KGaA has announced the launch of iOnctura SA, a new immuno-oncology company built around two assets from the Healthcare R&D portfolio of the pharmaceutical company.

Featured In: Biotech News


Ikea Promotes Food Products by Offering Fill-in-the-Blanks Recipe Sheets

June 21, 2017 - In an effort to promote the company’s food business, Ikea recently launched a set of recipes printed on parchment paper that encourage consumers to “fill-in-the-blanks” with ingredients, fold the paper and cook the bag in the oven.

Featured In: Food News


Nanomaterial Promotes Bone Growth after Spinal Fusion Surgery

June 21, 2017 - Researchers at Northwestern University have developed a bioactive nanomaterial capable of effectively stimulating bone regeneration after spinal fusion surgery.

Featured In: Life Science News


LEAVE A COMMENT
 
  
THE XTALKS VITALS INDUSTRY BLOG

Top 5 Most Impactful Tweets in Drug Development During the Last Week

REGISTER FOR THESE WEBINARS

Serialized? Yes. But are Products Still Being Diverted?


Quantitative Protein Profiling in FFPE to Characterize Toxicities Associated with Immune Checkpoint Inhibitors


Are You Choosing the Right Model? A Guide to Selecting Your Next Immuno-Oncology Model


Imaging-based Subtypes of Pancreatic Cancer


Copyright © 2016-2017 Honeycomb Worldwide Inc.