Upcoming Webinars Archived Webinars Training Vitals Host A Webinar About Get Updates Contact

Recent Medical Applications of 3-D Printing and the Future of Medical Device Manufacture

 

THE XTALKS BLOG

3-D Printing

Share this!

September 2, 2015 | by Sarah Massey

Last week, the Xtalks Blog posted an article entitled, “Printing Your Prescription: How 3-D Printing Technology is Affecting the Pharmaceutical Industry”. This article reviewed potential applications for 3-D printing in drug design, development and manufacturing, after the FDA approved the first 3-D printed drug, earlier this year.

While the use of 3-D printers in the pharmaceutical industry is still in its infancy, three-dimensional printing technology has been used for other applications such as medical device manufacture and improvements in research tools available for drug testing.

3-D printing has enabled the fabrication of polymer organ models which are essential in helping surgeons prepare for complicated procedures. Inexpensive prosthetic limb manufacture has also been possible thanks to the advent of three-dimensional printing. Synthetic tissue scaffolds and 3-D tissue constructs for research and therapeutic purposes, are unique additional uses of the printing equipment.



Model of the Heart

The fabrication of polymer organ models to study complicated morphological characteristics of diseased, cancerous and malformed tissue, is a simple but brilliant tool. Physicians – particularly surgeons – are capable of viewing the printed organ from all angles, and making educated strategies to repair and correct the organ’s abnormalities.

This ability to make a 3-D model based on the exact characteristics of the organ, taken from CT scans and MRI data, is an exciting venture into the world of personalized medicine. To date, 3-D printing has been used to create anatomical models of human tissues such as the kidney, liver and even a severely calcified aorta.

Earlier this year, doctors in Nanjing, China were able to print a 1:1 3-D replica of the heart of a 9-month-old baby born with a congenital heart defect. The boy was born with a heart disease called Tetralogy of Fallot, which resulted in the presence of five distinct holes – the largest of which was over 2 cm in diameter – in the vital organ.

“Such a big hole in the heart is even difficult for adults to bear, not to mention a three-month-old child,” said Dr. Sun Jian, chief of cardiothoracic surgery at Nanjing Children's Hospital. “If not treated early, if we waited until the child's pulmonary hypertension [was] higher than [the] limit, we might [have lost] the opportunity to save his life.”

Since the holes were very difficult to study using conventional 2-D imaging, the doctors decided to print a 3-D model of the boy’s heart in order to accurately prepare for corrective surgery. The doctors repaired the gaps and the boy is expected to make a successful recovery.

Before the fabrication of the model of the boy’s heart, he underwent an initial surgery in order to repair the holes, which took a total of 143 minutes. The second surgery – during which doctors were aided by the 3-D printed model – only took 25 minutes to complete. Since this type of repair requires invasive cardiothoracic surgery, it’s important that the total time the patient spends in the operating room is minimized.

According to Jian, this was the first child in China with a congenital heart disease, to be saved by 3-D printing technology. “It is good news for other children with complex congenital heart disease, especially for those with intracardiac malformation complex structures and [for the] treatment of vascular anomalies.”

Read Page 2 - Inexpensive 3-D Printed Prosthetic Hand

WATCH & PARTICIPATE IN THESE WEBINARS 

   

Applying Tissue Phenomics to Clinical Questions for Patient Stratification

Best Practice Approaches in Executing Post Approval Programs  



Keywords: 3-D Printing, Medical Device, Manufacturing

 


| NEXT ARTICLE | MORE BLOG POSTS |

 

Share this with your colleagues!

READ THESE NEXT
Printing Your Prescription: How 3-D Printing Technology is Affecting the Pharmaceutical Industry

August 26, 2015 - In the wake of the FDA’s first approved 3-D printed drug – which happened earlier this year – and the promise of three others in the works, experts are predicting that the future of the pharmaceutical industry lies in the development of printable drug products.


Are There Adequate Alternatives to Animal Testing?

August 19, 2015 - Three promising in vitro and in silico technologies including, Modular Immune in vitro Construct (MIMIC), Organ-on-a-Chip and Computer Models of Adverse Drug Reactions, which could reduce the need for animals in research, are reviewed in more detail.


Infographic - Medical Device Development in Cardiovascular Disease Clinical Trials

August 12, 2015 - See this infographic to give you an introductory understanding of cardiovascular disease risk, medical device industry involvement and the challenges involved when developing a medical device for a clinical trial.


LEAVE A COMMENT




 
Copyright © 2016-2017 Honeycomb Worldwide Inc.