Upcoming Webinars Archived Webinars Training Vitals Host A Webinar About Get Updates Contact

Neuroprotective Compound Could Offer New Treatment For Huntington’s Disease

XTALKS VITALS NEWS

Huntington's Disease

The results of the study – which were published in the journal, Cell Chemical Biology – found that the newly-discovered compound was able to prevent neurodegeneration in both cell culture and animal models of Huntington’s disease, using two distinct mechanisms.

Tweetables from this article:

Tweet: Pathologies of Huntington’s disease are very complex http://ctt.ec/pq6bN+Pathologies of Huntington’s disease are very complex.

Tweet: Researchers identified SIRT2 as a drug target for Huntington’s disease http://ctt.ec/U71O3+Researchers identified SIRT2 as a drug target for Huntington’s disease.

Share this!

July 18, 2016 | by Sarah Massey, M.Sc.

A new treatment for Huntington’s disease could lie in a novel neuroprotective compound, identified as part of a multi-institutional study run out of Massachusetts General Hospital (MGH). The results of the study – which were published in the journal, Cell Chemical Biology – found that the newly-discovered compound was able to prevent neurodegeneration in both cell culture and animal models of Huntington’s disease, using two distinct mechanisms.

The compound was able to activate an antioxidant pathway controlled by the NRF2 transcription factor, and concurrently inhibit a regulatory enzyme known as SIRT2. Named after the MassGeneral Institute for Neurodegenerative Disease (MIND), the compound was called MIND4.

“Based on numerous studies, it has become evident that the pathologies of neurodegenerative diseases, including Huntington’s disease, are very complex, so targeting multiple pathways may help us achieve maximum therapeutic benefit,” said Dr. Aleksey Kazantsev, an investigator at MIND, and the senior author on the study. “The lead compound identified in the current study has two distinct mechanisms, both of which are shown to be potentially neuroprotective and which we expect will have synergistic benefits.”

Kazantsev and his team previously identified SIRT2 as a potentially important drug target for Huntington’s disease and Parkinson’s disease. Collaborating with 12 different research centers across 5 countries, Kazantsev and his colleagues began looking for a group of chemically-similar molecules – known as a scaffold – which could support more effective and selective SIRT2 inhibitors.

While MIND4 was found to be the most potent SIRT2 inhibitor, the group identified and combined a number of other similar compounds, with varying levels of SIRT2 specificity. The researchers investigated MIND4’s inhibitive effects on SIRT2 by studying gene expression in cell culture models of Huntington’s disease, compared to healthy neurons.



They found that seven pathways were highly activated by MIND4 treatment, and that these were related to NRF2-mediated oxidative stress responses. These responses were characteristic of SIRT2 inhibition, and some of the other MIND compounds – including one known as MIND4-17 – had a neuroprotective effect on cells in both Drosophila and rat brains.

“Finding that MIND4’s SIRT2 and NRF2 activities are independent of each other is a critical step for further drug development, which indicates that work to improve the potency of each activity should proceed separately,” said Kazantsev. “We still don’t know whether the neuroprotective results we observed in this study depend more on one activity or the other, but since MIND4, which produces both activities, was a better protectant than MIND4-17, which only activates NRF2, I speculate that both activities will be necessary.

“MIND4 is a great starting template for drug development, and we have promising preliminary results in two mouse models,” continued Kazantsev. “We also need to optimize the pharmacology to meet FDA requirement for a version we can test in human patients. Right now, we expect to have results regarding the mechanism behind NRF2 activation ready for submission soon.”


Keywords: Huntington's Disease, Gene Expression, Drug Target


| NEXT ARTICLE | MORE NEWS | BLOGS | VIDEOS | POLLS & QUIZZES | WEBINARS |

Share this with your colleagues!

MORE NEWS
Lavazza Acquires Controlling Stake in Canada’s Kicking Horse Coffee

May 26, 2017 - Italian coffee company Lavazza, has secured an 80 percent equity stake in Canadian organic and fair-trade coffee company Kicking Horse Coffee, in a deal worth CAD$215 million.

Featured In: Food News


FDA First: Keytruda Approved for Cancer Treatment Based on Biomarker Alone

May 25, 2017 - For the first time, the FDA has approved a cancer treatment for solid tumors based on the presence of a biomarker, as opposed to specifying a tissue of origin.

Featured In: Biotech News


One Year of Medically Assisted Dying in Canada

May 25, 2017 - In June of 2016, the federal government of Canada passed legislation to legalize medically assisted dying.

Featured In: Life Science News


LEAVE A COMMENT
 
  
THE XTALKS VITALS INDUSTRY BLOG

Top 5 Most Impactful Tweets in Life Sciences During the Last Week

REGISTER FOR THESE WEBINARS

EU IVD Regulation: Top Five Changes for Medical Device Manufacturers to Consider


Thermal Processing Systems for the Food Industry: A Guide to Selecting Thermal Equipment and Technology


Rare Disease & Orphan Drug Development: Cost-Efficient Trial Design to Minimize Cash Burn


eTMF Workflows: Active eTMF to Improve the Quality of Clinical Trials


Copyright © 2016-2017 Honeycomb Worldwide Inc.