Upcoming Webinars Archived Webinars Training Vitals Host A Webinar About Get Updates Contact

Mechanism Behind Tumor Growth And Metastasis Revealed

XTALKS VITALS NEWS

In the early stages of tumor formation, TGF-beta acts as an inhibitory compound by preventing cell division and inducing cell death.

Tweetables from this article:

Tweet: "Only now have researchers identified some of the mechanisms responsible for TGF-beta’s switch"

Share this!

September 9, 2016 | by Sarah Massey, M.Sc.

While previous research has found that transforming growth factor beta (TGF-beta) can both stimulate and suppress cancerous tumor growth and development, the mechanisms behind this were unknown. Now, researchers at Ludwig Institute for Cancer Research at Uppsala University have uncovered some of the details governing this process.

The Ludwig Institute for Cancer Research at Uppsala University has a 30-year history in the study of TGF-beta’s role in cell signaling and tumorigenesis. Only now have researchers identified some of the mechanisms responsible for TGF-beta’s switch from tumor suppression to tumor enhancing.

“Our hope is that these findings will make it possible to discover a way to selectively inhibit the TGF-beta signals that stimulate tumor development without knocking out the signals that inhibit tumor development, and that this can eventually be used in the fight against cancer,” said Eleftheria Vasilaki, postdoctoral researcher at Uppsala University. The results of the research were published in the journal, Science Signaling.



TGF-beta is most active during fetal development where it acts to regulate cell growth and differentiation. The cytokine also plays a complicated role when it comes to tumor growth and development.

In collaboration with a research team in Japan, Vasilaki and colleagues found that TGF-beta works alongside another oncoprotein, Ras, which is often overexpressed in cancer cells. The two proteins suppress p53 protein, which is a key regulator of tumor development.

The suppression of p53 works to enhance the effect of a related protein, delta-Np63, which acts to stimulate cancer development and tumor metastasis. These findings could provide researchers with a better understanding of tumorigenesis, and TGF-beta could become a valuable drug target for the development of cancer therapies.


Keywords: Tumor Growth, Cancer Research, Metastasis


| NEXT ARTICLE | MORE NEWS | BLOGS | VIDEOS | POLLS & QUIZZES | WEBINARS |

Share this with your colleagues!

MORE NEWS
Exclusion Criteria for Clinical Trials Poses Major Barrier to Patient Enrollment

August 17, 2017 - UT Southwestern researchers say that clinical investigators continue to increase the number of exclusion criteria, preventing more patients from participating in clinical trials.

Featured In: Clinical Trials News


Targeting Cellular Nitrogen Metabolism Could Offer a New Treatment for Pancreatic Cancer

August 17, 2017 - An enzyme involved in regulating the amount of nitrogen in the cell could be a new drug target for pancreatic cancer, according to researchers from Boston Children's Hospital and the Broad Institute of MIT and Harvard.

Featured In: Life Science News


Regeneron’s Drug for Respiratory Syncytial Virus Fails in Phase III Clinical Trial

August 16, 2017 - Biotechnology company Regeneron has announced it will not continue development of its antibody drug, suptavumab, after a failure in a Phase III clinical trial.

Featured In: Clinical Trials News


LEAVE A COMMENT
 
  
THE XTALKS VITALS INDUSTRY BLOG

One Patient’s Perspective on Clinical Trials

REGISTER FOR THESE WEBINARS

Planning and Conducting Trials of the Latest Immunotherapies


ISO 13485:2016 for Medical Device Manufacturers: Ensuring a Smooth Transition through Effective Preparation


Medical Devices: Reviewing Regulatory Changes in the US and EU


Moving Beyond Regulatory and Performance Metrics in Starting Clinical Trials


Copyright © 2016-2017 Honeycomb Worldwide Inc.