Upcoming Webinars Archived Webinars Training Vitals Host A Webinar About Get Updates Contact

‘Kidney-On-A-Chip’ Offers Insight Into Drug Metabolism

XTALKS VITALS NEWS

Drug Delivery

In order to allow healthcare providers to quickly and reliably determine how a specific drug will be metabolized by the kidneys, researchers at the University of Michigan have developed a kidney-on-a-chip device, designed to mimic the response of the organ in vitro.

Share this!

May 10, 2016 | by Sarah Massey, M.Sc.

Many medications have varied effects on the vital organs, with some having severely toxic effects on the kidneys. For doctors, it isn’t always easy to predict how the drugs might affect the health of the kidneys, especially for those in the intensive care unit (ICU).

In order to allow healthcare providers to quickly and reliably determine how a specific drug will be metabolized by the kidneys, researchers at the University of Michigan have developed a kidney-on-a-chip device, designed to mimic the response of the organ in vitro. The small microfluidic device could help doctors prevent kidney damage in at-risk patients.

The kidneys play an important role in waste management, mineral balance, and regulating fluids. If kidney function is compromised as a result of drug toxicity, it can have systemic effects on the overall health of the patient.

It’s estimated that over 60 percent of patients in the ICU experience kidney damage to some extent, with 20 percent of these cases resulting from drug toxicity. As kidney toxicity is dependent on a number of patient-specific factors – including age, current medications, and comorbidities – deciding on the best dose to minimize risk can be difficult.

The microfluidic kidney-on-a-chip device consists of a permeable membrane and a layer of cultured human kidney cells, housed between two parallel compartments. The researchers hope that by simulating the environment inside the kidney, healthcare providers will have a better tool to predict drug toxicity in patients.

“When you administer a drug, its concentration goes up quickly and it's gradually filtered out as it flows through the kidneys,” said Professor Shuichi Takayama, of the University of Michigan’s biomedical engineering department. “A kidney-on-a-chip enables us to simulate that filtering process, providing a much more accurate way to study how medications behave in the body.”



In order to test the abilities of the kidney-on-a-chip, the researchers used two different drug delivery methods to apply the common antibiotic, gentamicin, to the cells in the device. By comparing two unique methods of drug infusion, the research team hoped to predict the potential effects on the kidney.

The first drug delivery method used a high concentration of the antibiotic that quickly decreased, simulating the act of administering a drug on a daily basis. The second method used a lower concentration that was slowly released over time, mimicking a prolonged drug infusion.

Following these experiments, the researchers removed the kidney cells from the device in order to determine whether they were damaged by the treatment. Despite the fact that the same volume of drug was used in both cases, the researchers found that the once-daily infusion was less damaging to the kidneys compared to the continuous, slow infusion.

“Even the same dose of the same drug can have very different effects on the kidneys and other organs, depending on how it's administered,” said Assistant Professor Sejoong Kim of Korea's Seoul National University Bundang Hospital. “This device provides a uniform, inexpensive way to capture data that more accurately reflects actual human patients.”

The researchers hope to further improve the device in the future, to allow it to provide real-time feedback on how a drug is metabolized. If the device is eventually approved, it could help to reduce kidney damage in patients in the ICU.


Keywords: Drug Metabolism, Drug Toxicity, Drug Delivery


| NEXT ARTICLE | MORE NEWS | BLOGS | VIDEOS | POLLS & QUIZZES | WEBINARS |

Share this with your colleagues!

MORE NEWS
Lavazza Acquires Controlling Stake in Canada’s Kicking Horse Coffee

May 26, 2017 - Italian coffee company Lavazza, has secured an 80 percent equity stake in Canadian organic and fair-trade coffee company Kicking Horse Coffee, in a deal worth CAD$215 million.

Featured In: Food News


FDA First: Keytruda Approved for Cancer Treatment Based on Biomarker Alone

May 25, 2017 - For the first time, the FDA has approved a cancer treatment for solid tumors based on the presence of a biomarker, as opposed to specifying a tissue of origin.

Featured In: Biotech News


One Year of Medically Assisted Dying in Canada

May 25, 2017 - In June of 2016, the federal government of Canada passed legislation to legalize medically assisted dying.

Featured In: Life Science News


LEAVE A COMMENT
 
  
THE XTALKS VITALS INDUSTRY BLOG

Top 5 Most Impactful Tweets in Life Sciences During the Last Week

REGISTER FOR THESE WEBINARS

EU IVD Regulation: Top Five Changes for Medical Device Manufacturers to Consider


Thermal Processing Systems for the Food Industry: A Guide to Selecting Thermal Equipment and Technology


Rare Disease & Orphan Drug Development: Cost-Efficient Trial Design to Minimize Cash Burn


eTMF Workflows: Active eTMF to Improve the Quality of Clinical Trials


Copyright © 2016-2017 Honeycomb Worldwide Inc.