Upcoming Webinars Archived Webinars Training Vitals Host A Webinar About Get Updates Contact

Dual Phage/Antibiotic Therapy May Be a Way to Increase Longevity of Antibiotics

XTALKS VITALS NEWS

Phage therapy generally works when bacterial receptor proteins recognize the phage and allow it to inject its genetic material and initiate the lytic cycle.

Tweetables from this article:

Tweet:  If a phage is virulent enough, it will kill most of a bacterial population

Share this!

September 13, 2016 | by Kelly Daescu

AmpliPhi Biosciences Corporation has recently beengranted a patent to treat antibiotic-resistant infections with a dual bacteriophage/antibiotic approach. This double-duty attack aims to re-sensitize bacteria to antibiotics by taking advantage of natural selection, as illustrated by a recent study. This study examined a strain of bacteria that responded to phage/antibiotic treatment due to “outsmarting” cell receptors and protein pumps.

Phage therapy generally works when bacterial receptor proteins recognize the phage and allow it to inject its genetic material and initiate the lytic cycle. If a phage is virulent enough, it will kill most of a bacterial population. The bacteria that survive, however, have a favorable mutation that makes them resistant to the phage. These unaffected progeny replicate, and over many generations, there can be a robust population that is resistant to the phage.

This is where the antibiotic



chaser becomes important. It was shown that bacteria that had an alteration in their receptor protein structure or expression had a selective advantage over phage infection. It was also shown that the phage-resistant bacteria became handicapped against antibiotics to which they were previously “immune”. Their prior antibiotic resistance was due to a membrane pump that removes antibiotics. The alteration of their membrane proteins during the natural selection process somehow also altered critical protein interactions necessary to remove antibiotics.

This dual bacteriophage/antibiotic attack creates a situation where the bacteria is placed in a lose-lose situation; if its genome alters so that it is more resistant to phages, it will lose its resistance to antibiotics. If its genome remains unchanged, it is susceptible to phage infections.

AmpliPhi is not alone in its creation of innovative methods to treat antibiotic resistance. Their new patent will specifically target a bug that affects Cystic Fibrosis patients.


Keywords: Antibiotics, Bacteriophage


| NEXT ARTICLE | MORE NEWS | BLOGS | VIDEOS | POLLS & QUIZZES | WEBINARS |

Share this with your colleagues!

MORE NEWS
Better Meal Planning for Diabetics Using a Predictive Blood Sugar App

April 21, 2017 - A new app could allow people with type 2 diabetes to make predictions about the impact of a meal on their blood sugar levels, before they even take a bite.

Featured In: Life Science News


Bacterial Biomarkers Could Make Diagnosing Colorectal Cancer Less Invasive

April 20, 2017 - Researchers at The University of Texas Health Science Center at Houston School of Public Health have identified specific strains of gut bacteria which have been associated with colorectal cancer.

Featured In: Life Science News


Weetabix Cereal Sold to Post in £1.4 Billion Deal

April 20, 2017 - The cereal was sold by Shanghai-based Bright Food, which acquired a controlling stake in the company in 2012.

Featured In: Food News

LEAVE A COMMENT
 
  
THE XTALKS VITALS LIFE SCIENCE BLOG

What Medical Device Manufacturers Need to Know Before Developing a Biological Safety Evaluation

REGISTER FOR THESE WEBINARS

Electronic Informed Consent: 2017 Industry Survey Results


Critical CRO Oversight Metrics: How to Establish the Right Metrics and Monitor them in Real-Time


The Modernization of eCOA Technology for Clinical Trials


Developing a Biological Safety Evaluation


Copyright © 2016-2017 Honeycomb Worldwide Inc.