Upcoming Webinars Archived Webinars Training Vitals Host A Webinar About Get Updates Contact

New CRISPR Gene Editing Enzyme Removed Duchenne Muscular Dystrophy Mutations



While the researchers previously used the original CRISPR-Cas9 system, they have now used a new enzyme, CRISPR-Cpf1, to change the defect in both mouse and human cells.

Share this!

April 17, 2017 | by Sarah Hand, M.Sc.

For the second time, a team of researchers at UT Southwestern Medical Center have corrected mutations associated with Duchenne muscular dystrophy using CRISPR gene editing. While the researchers previously used the original CRISPR-Cas9 system, they have now used a new enzyme, CRISPR-Cpf1, to change the defect in both mouse and human cells.

“We took patient-derived cells that had the most common mutation responsible for Duchenne muscular dystrophy and we corrected them in vitro to restore production of the missing dystrophin protein in the cells. This work provides us with a promising new tool in the CRISPR toolbox,” said senior study author, Dr. Eric Olson, Chairman of Molecular Biology, Co-Director of the UT Southwestern Wellstone Muscular Dystrophy Cooperative Research Center, and Director of the Hamon Center for Regenerative Science and Medicine. The researchers published their findings in the journal, Science Advances.

The CRISPR-Cpf1 tool has a number of advantages over the original CRISPR-Cas9 gene editing system. Importantly, the Cpf1 enzyme is smaller than Cas9, which allows it to more easily fit inside of a viral vector which can deliver the enzyme to muscle cells. Cpf1 also recognizes a different sequence, giving researchers options when it comes to gene editing.

“There will be some genes that may be difficult to edit with Cas9 but may be easier to modify with Cpf1, or vice versa,” said Olson. “The two proteins have different biochemical properties and recognize different DNA sequences, so these properties create more options for gene-editing.”

Mutations in the dystrophin gene – one of the longest genes ever identified – cause Duchenne muscular dystrophy. Dystrophin proteins provide a supportive role for muscle fiber, and its absence causes a number of characteristic symptoms, including progressive muscle weakness and eventually loss of muscle function.

“By either skipping a mutation region or precisely repairing a mutation in the gene,” said co-author Dr. Rhonda Bassel-Duby, Professor of Molecular Biology and Associate Director of the Hamon Center for Regenerative Science and Medicine, “CRISPR-Cpf1-mediated genome editing not only corrects Duchenne muscular dystrophy mutations but also improves muscle contractility and strength.”

Because of concerns surrounding so-called “off-target” effects of CRISPR gene editing, the researchers must find a way to ensure that the technique is focused and controlled. “CRISPR-Cpf1 gene-editing can be applied to a vast number of mutations in the dystrophin gene. Our goal is to permanently correct the underlying genetic causes of this terrible disease, and this research brings us closer to realizing that end,” said Olsen.

According to the Centers for Disease Control and Prevention (CDC), Duchenne muscular dystrophy occurs with a frequency of one in every 5,000 boys. The FDA recently approved two drugs, Sarepta Therapeutics’ Exondys 51 and Marathon Pharmaceuticals’ Emflaza, to treat Duchenne muscular dystrophy.

Keywords:  CRISPR, Duchenne Muscular Dystrophy, Gene Editing


Share this with your colleagues!

Kite Pharma Secures FDA Approval for CAR-T Immunotherapy

October 20, 2017 - Kite Pharma’s Yescarta (axicabtagene ciloleucel) has become the second CAR-T immunotherapy to be approved in the US, with an indication in treating adult patients with relapsed or refractory large B-cell lymphoma.

Featured In: Biotech News

Fallopian Tubes Found to be Site of Origin for Most Ovarian Cancers

October 20, 2017 - This year, over 22,000 women will be diagnosed with ovarian cancer but a new study conducted by researchers at Perlmutter Cancer Center at NYU Langone Health suggests that most of these malignancies begin in another part of the reproductive system: the fallopian tubes.

Featured In: Life Science News

Food Companies are Looking for the Next Sriracha

October 19, 2017 - The Sriracha trend might be coming to an end and companies are looking for the next big hot sauce star to feature in their line-up.

Featured In: Food News


Five Reasons Why Toronto is Emerging as a Major Life Sciences Hub


Brexit – Separating Fact from Fiction

Evolving Best Practices for Working with Authors of Scientific Publications – Authorship and Beyond

Human Whole-Genome Sequencing in a New Era Defined by the Illumina® HiSeq X® and NovaSeq™ Platforms

Clinical Event Adjudication: Comprehensive and Efficient Dossier Review Using a Global On-Line Solution

Copyright © 2016-2017 Honeycomb Worldwide Inc.