Upcoming Webinars Archived Webinars Training Vitals Host A Webinar About Get Updates Contact

Bacteria Survive Antibiotic Assault Due To DNA Repair Mechanisms

XTALKS VITALS NEWS

Antibiotic Resistance

According to the study authors, designing future antibiotic treatments to target this molecule – called ppGpp – could make these microbes more susceptible to irreparable DNA damage, and cell death.

Share this!

May 24, 2016 | by Sarah Massey, M.Sc.

Researchers at NYU Langone Medical Center have identified a key molecule which allows bacteria to repair serious DNA damage, thereby making them resistant to certain antibiotics. The research was published in the journal, Science.

According to the study authors, designing future antibiotic treatments to target this molecule – called ppGpp – could make these microbes more susceptible to irreparable DNA damage, and cell death. Antibiotic resistance is developed when bacteria are repeatedly exposed to the same drug. According to the Centers for Disease Control and Prevention (CDC), drug-resistant bacterial infections are linked to 2 million cases of illness, and 23,000 deaths in the US each year.

“Most antibiotics have their effect, directly or indirectly, by causing damage to bacterial DNA, so finding ways to cripple DNA repair would represent a significant advance in the treatment of resistant infections,” said Dr. Evgeny Nudler, the Julie Wilson Anderson Professor of Biochemistry, Department of Biochemistry and Molecular Pharmacology, NYU Langone, and a senior author on the study. “While reducing DNA repair in bacteria could help to overcome antibiotic resistance, we're also excited about the prospect of boosting DNA repair in human cells. DNA damage accumulates with age and creates risk for degenerative diseases from Alzheimer's to cancer.”



Previous research performed by Nudler and colleagues, found that RNA polymerase – the protein complex that translates the genetic code in the DNA into RNA, which will then be used to build proteins – also possess a proofreading function, capable of backtracking to ensure the DNA sequencing is free of lesions. If the enzyme does encounter a damaged base, it is able to recruit nucleotide excision DNA repair (NER) enzymes, to repair the mutation.

Nearly 20 years later, the researchers found that the NER enzyme in E. coli – called UvrD – encourages the bacterial RNA polymerase to backtrack. In the new paper, the researchers describe the ppGpp compound as the main controller of the UvrD-induced backtracking in the NER pathway.

As the RNA polymerase identifies DNA damage and backtracks, levels of ppGpp rise; once the chain is repaired, the concentration of the molecule drops. According to the researchers, ppGpp is likely the sensor that allows the bacterial RNA polymerase to switch between DNA transcription and repair.

According to Nudler, as the enzymes responsible for DNA repair and maintaining genomic integrity are integral to a bacterial cell’s survival, this pathway could be a prime target for antibiotic drug development. The researchers also hope to demonstrate this same link between RNA polymerase backtracking and DNA repair in human cells, which could have implications in treating degenerative diseases associated with advanced age.


Keywords: Antibiotic Resistance, DNA Damage, Drug Target


| NEXT ARTICLE | MORE NEWS | BLOGS | VIDEOS | POLLS & QUIZZES | WEBINARS |

Share this with your colleagues!

MORE NEWS
Researchers Identify Role of ApoE4 Gene as Possible Drug Target in Alzheimer’s Disease

September 21, 2017 - A team of neurology researchers at Washington University School of Medicine in St. Louis have found that in the presence of the ApoE4 protein, another protein known as tau forms tangles in the brain which contributes to neuronal damage characteristic of Alzheimer’s disease.

Featured In: Life Science News


New Guidelines Address CAR-T Immunotherapy Toxicities to Prevent Patient Deaths

September 20, 2017 - Clinicians at The University of Texas MD Anderson Cancer Center have published new guidelines in the journal, Nature Reviews Clinical Oncology, which could help in the management of these toxicities.

Featured In: Biotech News, Drug Safety News


Microneedle Skin Patch Could Treat Common Metabolic Disorders

September 19, 2017 - Researchers at Columbia University Medical Center (CUMC) and the University of North Carolina have developed a microneedle skin patch impregnated with a drug capable of converting white fat into calorie-burning brown fat.

Featured In: Medical Device News


LEAVE A COMMENT
 
  
THE XTALKS VITALS INDUSTRY BLOG

Five Reasons Why Toronto is Emerging as a Major Life Sciences Hub

REGISTER FOR THESE WEBINARS

Development and Manufacture of Highly Potent API Drug Products Throughout the Clinical Phases


Innovation through Integration – Providing Next Generation Biomedical Devices and Interconnects


Clinical Payments Case Studies: Improving Efficiency, Cash Management, and Compliance


Why Phase 3 Trials Fail: Oncology Case Studies and Lessons Learned


Copyright © 2016-2017 Honeycomb Worldwide Inc.