Upcoming Webinars Archived Webinars Training Vitals Host A Webinar About Get Updates Contact

Nicotinamide Mononucleotide Reduces Age-Related Health Decline in Mice

XTALKS VITALS NEWS

Mouse

These researchers found that NMN was able to reduce multiple signs of aging, including weight gain, diminished physical activity and loss of insulin sensitivity.

Share this!

November 2, 2016 | by Sarah Hand, M.Sc.

As cells age, their ability to produce and efficiently utilize energy begins to decline, potentially resulting in deterioration in health. While the reason behind this age-related energy decline is unknown, researchers at Washington University School of Medicine in St. Louis have shown that giving a nicotinamide mononucleotide (NMN) supplement to healthy mice could be compensatory for the decline in cellular energy production.

These researchers found that NMN was able to reduce multiple signs of aging, including weight gain, diminished physical activity and loss of insulin sensitivity. The research was published in the journal, Cell Metabolism.

“We have shown a way to slow the physiologic decline that we see in aging mice,” said Dr. Shin-ichiro Imai, a professor of developmental biology and of medicine at the Washington University School of Medicine. “This means older mice have metabolism and energy levels resembling that of younger mice. Since human cells rely on this same energy production process, we are hopeful this will translate into a method to help people remain healthier as they age.”

Based on the promising results Imai and his team identified in preclinical mouse studies, the compound is now being tested in humans. A Phase I clinical trial testing the safety of NMN in human participants was started earlier this year at Keio University School of Medicine in Tokyo.



Levels of a key component of cellular energy production – known as nicotinamide adenine dinucleotide (NAD) – decline in many tissue types as cells age. Previous work conducted by Imai and his colleagues has shown that directly supplementing mice with NAD was not an effective method to boost cellular energy levels.

Instead, the researchers decided to supplement mice with NMN, which happens to be a key component of the NAD coenzyme generation pathway. As a derivative of vitamin B3, NMN is found in multiple foods, including cabbage, broccoli and cucumber.

By dissolving the supplement in water, the researchers were able to rapidly deliver NMN to the bloodstream of mice in fewer than three minutes. Imai and his team also found that the NMN was quickly converted to NAD in multiple tissue types throughout the mice.

“We wanted to make sure that when we give NMN through drinking water, it actually goes into the blood circulation and into tissues,” said Imai. “Our data show that NMN absorption happens very rapidly.”

To determine how NMN supplementation affects the long-term health of the mice, the researchers split the animals into three test groups receiving a high dose of NMN, low dose of NMN or no dose of NMN as a control. Animals that received either dose of NMN saw benefits to multiple tissues, including liver function, bone density, insulin sensitivity and immune function. Interestingly, these benefits were only observed in older mice.

“When we give NMN to the young mice, they do not become healthier young mice,” said Dr. Jun Yoshino, an assistant professor of medicine at Washington University School of Medicine. “NMN supplementation has no effect in the young mice because they are still making plenty of their own NMN. We suspect that the increase in inflammation that happens with aging reduces the body’s ability to make NMN and, by extension, NAD.”


Keywords: Cellular Energy Production, Age-Related Disease, Health


| NEXT ARTICLE | MORE NEWS | BLOGS | VIDEOS | POLLS & QUIZZES | WEBINARS |

Share this with your colleagues!

MORE NEWS
Researchers Identify Role of ApoE4 Gene as Possible Drug Target in Alzheimer’s Disease

September 21, 2017 - A team of neurology researchers at Washington University School of Medicine in St. Louis have found that in the presence of the ApoE4 protein, another protein known as tau forms tangles in the brain which contributes to neuronal damage characteristic of Alzheimer’s disease.

Featured In: Life Science News


New Guidelines Address CAR-T Immunotherapy Toxicities to Prevent Patient Deaths

September 20, 2017 - Clinicians at The University of Texas MD Anderson Cancer Center have published new guidelines in the journal, Nature Reviews Clinical Oncology, which could help in the management of these toxicities.

Featured In: Biotech News, Drug Safety News


Microneedle Skin Patch Could Treat Common Metabolic Disorders

September 19, 2017 - Researchers at Columbia University Medical Center (CUMC) and the University of North Carolina have developed a microneedle skin patch impregnated with a drug capable of converting white fat into calorie-burning brown fat.

Featured In: Medical Device News


 
  
THE XTALKS VITALS INDUSTRY BLOG

Five Reasons Why Toronto is Emerging as a Major Life Sciences Hub

REGISTER FOR THESE WEBINARS

Development and Manufacture of Highly Potent API Drug Products Throughout the Clinical Phases


Innovation through Integration – Providing Next Generation Biomedical Devices and Interconnects


Clinical Payments Case Studies: Improving Efficiency, Cash Management, and Compliance


Why Phase 3 Trials Fail: Oncology Case Studies and Lessons Learned


Copyright © 2016-2017 Honeycomb Worldwide Inc.